图片发到 2 楼,大约 2000x2000 的图片,目标机器没有显卡。算法时间可以长一点,单张图片 10 秒也可以接受。
测了下霍夫算法,好像时间太长了,而且准确度也没法保障。
求一个思路( opencv 不太熟,里面好像有 svm,cnn,dnn 啥的不知道是否合适),万分感谢~~~
1
wjx0912 OP |
2
wjx0912 OP |
3
wjx0912 OP |
4
wjx0912 OP |
5
wjx0912 OP |
6
wjx0912 OP 还请各位大佬不吝赐教~
|
7
bluesenzhu 294 天前
你贴的什么,啥也看不到
|
8
StephenW 294 天前
YoLov5 应该可以,训练起来也简单
|
9
sunshijie 294 天前
推荐 YoLov5 +1
|
10
Muniesa 294 天前 via Android
霍夫圆的参数对结果影响很大,如果不需要拟合圆的话,直接 yolo 吧
|
11
xinyu391 294 天前
yolov5 +1
|
12
bluesenzhu 294 天前 3
如果全是这种有规律的图案,自己手搓代码(硬编码)速度应该可以在 0.1s 内。
你这个肉眼看特征很明显,就是白底上的小圆,二值化后找轮廓,然后手工写代码判断下是不是圆 |
13
alexsz 294 天前
从图片上看特征还是比较明显的,第一步可以行把方形小纸片扣出来,因为圆形的直径和小纸片长宽基本保持在一个比例范围,所以可以根据小纸片尺寸指定一个适合的霍夫算法参数,第二步再用霍夫检测圆,如果检测出多个圆形,第三步可以再次根据圆形和小纸片的面积或者尺寸比例 排除一下
|
14
0312birdzhang 294 天前
intel 的 CPU 的话可以用 openvino 来加速,跑 onnx 模型没那么慢。用上面提到的 yolov5 ,应该不难。
|
15
CynicalRose 294 天前
精度要求不高的话可以考虑传统算法,用 opencv 进行模板匹配。
你可以先参考下: https://blog.csdn.net/yukinoai/article/details/88366234 |
16
paopjian 294 天前
我试了一下,霍夫曼检测好像没问题,就是不太准
![202403080934.png]( https://s2.loli.net/2024/03/08/egPqBYbjLNzriAC.png) 代码是抄的 https://aistudio.baidu.com/projectdetail/649807 |
17
wjx0912 OP 感谢大家~
打算先试下霍夫(图片先缩放一下),然后 15 楼的模版匹配,然后再试试 yolo5 |
18
wjx0912 OP 大概率不用霍夫,这个准确度是在是难以达到。。。
|
19
Yuhyeong 294 天前 1
这种程度直接模式匹配就行了,用不上机器学习都。opencv 自带的有模式匹配函数
|
20
sslzjx 294 天前
Halcon 代码,可以试下
* This program fits circles into circular contour segments * to extract their positions and radii * dev_update_off () * * step: acquire image * read_image (Image, 'OXfE6Ph.png') * auto_threshold (Image, all_Region, 15.0) * connection (all_Region, all_ConnectedRegions) * select_shape (all_ConnectedRegions, all_ConnectedRegions, 'area', 'and', 7000, 14000) * count_obj (all_ConnectedRegions, all_NumberContours) * for Index := 1 to all_NumberContours by 1 * select_obj(all_ConnectedRegions, ObjectSelected1, Index) * smallest_rectangle1(ObjectSelected1, Row1, Column1, Row2, Column2) * crop_part(Image, ImagePart, Row1, Column1, Row2-Row1, Column2-Colu) * endfor get_image_size (Image, Width, Height) dev_close_window () dev_open_window (0, 0, Width / 2, Height / 2, 'light gray', WindowID) dev_set_part (0, 0, Height - 1, Width - 1) dev_set_line_width (3) dev_set_color ('white') dev_set_draw ('margin') dev_display (Image) set_display_font (WindowID, 14, 'mono', 'true', 'false') disp_continue_message (WindowID, 'black', 'true') stop () * * step: segment image into regions * dev_set_colored (12) dev_set_line_width (2) dev_set_draw ('fill') *equ_histo_image (Image, Image) scale_image_max (Image, Image) decompose3 (Image, Image_R, Image_G, Image_B) * fast_threshold (Image, Region, 180, 230, 20) auto_threshold (Image_G, Region, 5.0) stop() connection (Region, ConnectedRegions) select_shape (ConnectedRegions, SelectedRegions, 'circularity', 'and', 0.6, 1.2) select_shape (SelectedRegions, SelectedRegions, 'area', 'and', 200, 500) dev_display (Image) dev_display (SelectedRegions) disp_continue_message (WindowID, 'black', 'true') stop () * * step: create ROI for contour processing * boundary (SelectedRegions, RegionBorder, 'inner_filled') dilation_circle (RegionBorder, RegionDilation, 3.5) union1 (RegionDilation, RegionUnion) reduce_domain (Image, RegionUnion, ImageReduced) dev_clear_window () dev_display (ImageReduced) disp_continue_message (WindowID, 'black', 'true') stop () * * step: create contours and fit circles to them * edges_sub_pix (ImageReduced, Edges, 'canny', 1.5, 10, 40) segment_contours_xld (Edges, ContoursSplit, 'lines_circles', 5, 2, 2) select_contours_xld (ContoursSplit, SelectedContours, 'contour_length', 25, 99999, -0.5, 0.5) count_obj (SelectedContours, NumberContours) gen_empty_obj (Circles) for i := 1 to NumberContours by 1 select_obj (SelectedContours, ObjectSelected, i) get_contour_global_attrib_xld (ObjectSelected, 'cont_approx', Attrib) if (Attrib == 1) concat_obj (Circles, ObjectSelected, Circles) endif endfor union_cocircular_contours_xld (Circles, UnionContours, rad(60), rad(10), rad(30), 100, 50, 10, 'true', 1) dev_clear_window () dev_set_color ('black') dev_display (UnionContours) disp_continue_message (WindowID, 'black', 'true') stop () count_obj (UnionContours, NumberCircles) CenterRow := [] CenterColumn := [] dev_clear_window () dev_set_color ('black') set_display_font (WindowID, 12, 'mono', 'true', 'false') dev_display (SelectedContours) for i := 1 to NumberCircles by 1 select_obj (UnionContours, ObjectSelected, i) fit_circle_contour_xld (ObjectSelected, 'algebraic', -1, 0, 0, 3, 2, Row, Column, Radius, StartPhi, EndPhi, PointOrder) gen_circle_contour_xld (ContCircle, Row, Column, Radius, 0, rad(360), 'positive', 1.5) dev_set_color ('white') dev_display (ContCircle) if (i == 1) Row2 := Row + Radius * sin(rad(-45)) Column2 := Column + Radius * cos(rad(-45)) set_tposition (WindowID, Row2 - 35, Column2 + 5) endif if (i > 1) exist := 0 for j := 0 to i - 2 by 1 distance_pp (Row, Column, CenterRow[j], CenterColumn[j], DistanceCenters) if (DistanceCenters < 20) exist := 1 endif endfor if (exist == 1) Row2 := Row + Radius * sin(rad(-135)) Column2 := Column + Radius * cos(rad(-135)) set_tposition (WindowID, Row2 - 40, Column2 - 30) else Row2 := Row + Radius * sin(rad(-45)) Column2 := Column + Radius * cos(rad(-45)) set_tposition (WindowID, Row2 - 35, Column2 + 5) endif endif disp_arrow (WindowID, Row, Column, Row2, Column2, 2) write_string (WindowID, i) if (i < 8) disp_message (WindowID, 'R' + i + ' = ' + Radius$'.4', 'window', i * 20, 130, 'black', 'false') else disp_message (WindowID, 'R' + i + ' = ' + Radius$'.4', 'window', (i - 7) * 20, 400, 'black', 'false') endif CenterRow := [CenterRow,Row] CenterColumn := [CenterColumn,Column] endfor * dev_update_window ('on') |
21
lycpang 294 天前
你换个思路,在白色的区域检测是不是有较大色差,是不是比检测形状简单多了。
|
22
kyingstar 294 天前
https://github.com/bubbliiiing/yolov7-pytorch 可以用这个训练,本地训练太慢可以在 https://www.autodl.com/home 上训练
|
23
czita 294 天前
可以看下 opencv 的二值化和轮廓
|