V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
V2EX  ›  Higurashi  ›  全部回复第 2 页 / 共 6 页
回复总数  103
1  2  3  4  5  6  
2022-02-04 11:07:14 +08:00
回复了 Higurashi 创建的主题 问与答 算法 4 中的均摊分析
@lance6716 #3 嗯,我从 https://www.cnblogs.com/longjin2018/p/9854502.html 找到了更多的解释:

“设栈长度达到 N/2+1 时数组长度从 N/2 延长至 N 。连续的 push 操作使数组从长度 N 延长至 2N 是最坏的连续 push 情况。栈长度在 N/2+2 至 N 区间进行的 N/2-1 次 push 操作不会促使数组延长,此区间每次 push 对应一次数组元素的写访问。栈长度从 N 变为 N+1 时需要一次 push 操作和一次数组延长,一次 push 操作对应一次数组写操作,一次数组延长对应 4N 次数组访问。那么栈长度从 N/2+1 变为 N+1 需要进行的数组访问次数为 N/2+4N,push 操作次数为 N/2,均摊后每次 push 操作对应的数组访问次数为(N/2+4N)/(N/2)=9 。”
2022-02-03 19:49:58 +08:00
回复了 Higurashi 创建的主题 问与答 算法 4 中的均摊分析
@lance6716 #1 感谢回复。是的,但不知道下面的理解是哪里出了问题:

比如 N 为 32 ,Stack 将在第 33 次 push() 操作时数组长度从 32 resize() 到 64 ,且此次 resize() 操作对数组的访问次数为 64 ,前一次数组加倍发生在第 17 次 push() 操作,数组长度从 16 resize() 到 32 ,resize() 操作对数组的访问次数为 32 。

那么,按照证明中的说法,对于第 33 次 push(),考虑使栈大小增长到 k 的最近 N/2-1=15 次 push() 操作(其中 k 在 N/2+2=18 到 N=32 之间),这 15 次 push() 操作之间只有一次 resize(),发生在第 17 次 push() 操作时,其访问数组的次数为 32 ,并不等于 4N=128 ,而 15 次 push() 操作,a[N++] = item; 对数组的访问为 15 次,也并不等于 N/2=16 次,更不用说取平均得到 9 。
2021-12-04 17:38:08 +08:00
回复了 Higurashi 创建的主题 问与答 算法 4 中的一个习题
另外按 DoublingStackOfStrings 的名称来看,它其实不应该实现泛型,而只支持 String 类型。
2021-12-04 16:11:32 +08:00
回复了 Higurashi 创建的主题 问与答 算法 4 中的双栈算数表达式求值算法
@GuuJiang #3
我大概懂了,现在做一点总结。
假设全都是二元运算符(包括一元运算符的情况类似)。
定义辅助符号<==>,读作“在该算法意义下等价”。如 s1 <==> s2 表示对于表达式 s1 和 s2 应用上述算法得到的结果相等。
第一步:证 X exp Y <==> X eval(exp) Y ,exp 表示形如 (v1 op v2) 的由 v1 、op 、v2 组成的子表达式( v1 、v2 、op 分别表示两个字面值和一个操作符),X 、Y 分别表示算数表达式除 exp 后的前面部分和后面部分,且 X 中不包含右括号,eval(exp) 表示算法对子表达式 exp 求值后的结果。
在算法遇到 exp 中的右括号时,算法将 exp 中的 v1 、v2 弹出进行计算得到 eval(exp) 并将其入栈,因为 X 中不包含右括号,所以,算法解析 X eval(exp) Y 至 eval(exp) 入栈时,其结果与算法解析 X exp Y 至将 exp 求值后完全相同,所以 X exp Y <==> X eval(exp) Y 。
第二步:记 p(n) 为含有 n 对括号的合法表达式、p(n-1) 为算法对 p(n) 求值时遇到第一个右括号后出栈求解再入栈得到的新表达式(注意到此时括号会减少一对),由第一步的证明有 p(n) <==> p(n-1) <==> p(n-2) ... <==> p(1) <==> p(0),不难知道算法能够正确处理不包括括号(只包含一个字面值)的 p(0),所以算法能够正确处理 p(n)。
再次感谢。
2021-12-04 13:40:44 +08:00
回复了 Higurashi 创建的主题 问与答 算法 4 中的双栈算数表达式求值算法
@GuuJiang #1 感谢回复。为了防止误解,我觉得我还是先问清楚几个问题比较好。

1. 这里的“规约规则”是不是指“归纳奠基”?
2. X...<exp>...Y <==> X...eval(exp)...Y 是什么意思?
3. eval(p(n)) 是指?
2021-12-03 20:53:54 +08:00
回复了 Higurashi 创建的主题 问与答 算法 4 中的一个习题
@ynyounuo #1 感谢回复。的确应该是这样。所以 DoublingStackOfStrings 中的 Doubling 是“倍增”的意思,对应于 ResizingArrayStack 类中的 resize(2*a.length)。DoublingStackOfStrings 指的就是前文中的 ResizingArrayStack 。
2021-11-16 21:59:44 +08:00
回复了 Higurashi 创建的主题 问与答 Java 按二进制创建浮点数
@OysterQAQ #8 嗯,的确不处理问题也不大。
2021-11-16 21:45:05 +08:00
回复了 Higurashi 创建的主题 问与答 Java 按二进制创建浮点数
@Buges #2
感谢回复。我会试试看,虽然似乎并不那么好找,因为我看见有些库里面也并没有处理这里的情况。
2021-11-16 21:43:03 +08:00
回复了 Higurashi 创建的主题 问与答 Java 按二进制创建浮点数
@OysterQAQ #4
我没把注释说清楚,这里的意思实际上是指,比如传入一个在 float 中为 NaN 的整数 0b01111111100000000000000000000001 ,虽然返回的浮点值为 NaN ,但它并不能**保证**这个 NaN 的位模式为 01111111100000000000000000000001 (除非自己亲自验证一下)。
2021-11-16 21:25:58 +08:00
回复了 Higurashi 创建的主题 问与答 Java 按二进制创建浮点数
@OysterQAQ #1
感谢回复。意思是判断指数位是否为全 1 ,全为 1 则给出提示?这似乎并没有真正在用二进制“初始化”浮点数。
2021-11-16 20:27:47 +08:00
回复了 Higurashi 创建的主题 问与答 NaN 的二进制形式
@Higurashi #3
另外,可以使用 Float.floatToRawIntBits(float) 将单精度浮点数转换为对应的整数位模式,与 Float.intBitsToFloat(float) 不同,它将会保留 NaN 的原信息。
2021-11-14 21:01:38 +08:00
回复了 Higurashi 创建的主题 问与答 NaN 的二进制形式
2021-11-14 20:33:34 +08:00
回复了 Higurashi 创建的主题 问与答 NaN 的二进制形式
@icyalala #5
谢谢!👍
2021-11-14 19:27:28 +08:00
回复了 Higurashi 创建的主题 问与答 NaN 的二进制形式
@imKiva #1
@icyalala #2
感谢回复。不知道是否有方法能够打印一个值为 NaN 的变量的二进制形式?
2021-11-10 21:22:38 +08:00
回复了 Higurashi 创建的主题 问与答 浮点数精确到多少位?
@shintendo #13
暂时只是十进制转二进制过程中的精度问题。
2021-11-10 19:43:39 +08:00
回复了 Higurashi 创建的主题 问与答 浮点数精确到多少位?
@shintendo #12
嗯,“不只是写在源代码里的,也包括计算产生的数”是不是指这样一种情况:
int a = 16777215;
int b = a * 10 + 1;
System.out.println((float)a);
System.out.println((float)b);
-----
1.6777215E7
1.67772144E8
在这里 167772151 为“计算产生的数”,其超过了单精度的精确范围,所以转换为单精度时不能够被准确表示。
2021-11-10 12:29:40 +08:00
回复了 Higurashi 创建的主题 问与答 浮点数精确到多少位?
@shintendo #9
意思是 23 bit 所保存着的小数转化(数学上的转化,不进行舍入)为十进制数后最多包含 8 位有效数字,且并不是所有拥有 8 位有效位的十进制小数都能够被准确保存?
2021-11-10 08:22:47 +08:00
回复了 Higurashi 创建的主题 问与答 浮点数精确到多少位?
@shintendo #6
抱歉我没有仔细理解。我想我懂得了你的意思,现在总结一下。
通常所说的精确到多少位(比如 7 ),指的是当我们在源代码中添加一个浮点数字面量时,浮点数超过第 7 位的有效位可能不能够准确表示。
2021-11-09 11:21:09 +08:00
回复了 Higurashi 创建的主题 问与答 浮点数精确到多少位?
@shintendo #6
的确,不同的场景有不同的所谓“精度”。我在 https://www.exploringbinary.com/decimal-precision-of-binary-floating-point-numbers/ 中看到了一种定义:
“For most of our purposes when we say that a format has n-digit precision we mean that over some range, typically [10^k, 10^(k+1)), where k is an integer, all n-digit numbers can be uniquely identified.”
我觉得暂时只讨论清楚这样一种“精度”比较好,所以现在我的疑惑是,[10^k, 10^(k+1)) 范围内的数字,它能够精确到多少位?是如何得到的?比如,我在源代码中写下一个浮点数,我如何知道从第几位开始程序就不再能够准确地将其表示?
链接指向的文章对此进行了解释,但说实话,我还看不太懂。
2021-11-07 13:17:30 +08:00
回复了 Higurashi 创建的主题 问与答 浮点数精确到多少位?
@shintendo #2 @oldshensheep #4 感谢回复。我稍微懂得了一些。24 位二进制最大为 (1111 1111 1111 1111 1111 1111)2 = (2^24-1)10 ,观察到 100(10^2)<=y<1000(10^3),此时 y 有 [log10y] + 1 = 3 个有效位,类似可以知道 2^24-1 有 [log10(2^24-1)] + 1 个有效位。
但是小于 2^24-1 的 24 位二进制数转换为 10 进制也还是 [log10(2^24-1)] + 1 个有效位吗?比如 (0000 0000 0000 0000 0000 001)2 在十进制中有多少个有效位?
1  2  3  4  5  6  
关于   ·   帮助文档   ·   博客   ·   API   ·   FAQ   ·   实用小工具   ·   1402 人在线   最高记录 6679   ·     Select Language
创意工作者们的社区
World is powered by solitude
VERSION: 3.9.8.5 · 18ms · UTC 17:24 · PVG 01:24 · LAX 09:24 · JFK 12:24
Developed with CodeLauncher
♥ Do have faith in what you're doing.