necomancer

necomancer

V2EX 第 155048 号会员,加入于 2016-01-12 03:48:51 +08:00
今日活跃度排名 4057
根据 necomancer 的设置,主题列表被隐藏
二手交易 相关的信息,包括已关闭的交易,不会被隐藏
necomancer 最近回复了
来,跟我读,在“六、指数形式的傅里叶变换”海螺图出现的下方:

是不是很漂亮?

你猜猜,这个图形在时域是什么样子?

[方波插图]

哈哈,是不是觉得被狠狠扇了一个耳光。数学就是这么一个把简单的问题搞得很复杂的东西。

顺便说一句,那个像大海螺一样的图,为了方便观看,我仅仅展示了其中正频率的部分,负频率的部分没有显示出来。

如果你认真去看,海螺图上的每一条螺旋线都是可以清楚的看到的,每一条螺旋线都有着不同的振幅(旋转半径),频率(旋转周期)以及相位。而将所有螺旋线连成平面,就是这幅海螺图了。

好了,讲到这里,相信大家对傅里叶变换以及傅里叶级数都有了一个形象的理解了,我们最后用一张图来总结一下:

[插图]

好了,傅里叶的故事终于讲完了,下面来讲讲我的故事:
并没有屏蔽,我只是想强调一下。sq 。。。那个是方波的傅立叶逆变换形式。海螺图里竖起来的轴是时间,横纵轴是实部和虚部。你倒是看看人原帖啊,写得很清楚啊。
欧拉函数 exp(it)是随时间周期圆周运动的点的轨迹,把时间轴拉开是***一条***螺线。这个明显是一堆螺线的累积,是***方波***对应的所有的 exp(iwt),即 sqwave[t] = int_w f_w exp(iwt) 里每一个 f_w exp(iwt) 的累计,你读读你引用的这个知乎啊。
16 天前
回复了 whereFly 创建的主题 Python 请问这算是递归函数码?
是不是少了 return ?(在 else 和 aa2 里)
36 天前
回复了 Richard14 创建的主题 Python Numpy 计算协方差的结果应该如何理解?
@Richard14 我的回复好像有点脑残……你是要判断相似性或者说距离的话算法是不一样的,如果是距离那么直接 np.argmin(np.sum((a-b) ** p, axis=-1)),比如 p=2 是欧式距离。我写的是 cos(theta),做距离的话一般是 1 - cos(theta) 啥的,这个你自己调整一下吧。numpy 是很炫酷的。
38 天前
回复了 Richard14 创建的主题 Python Numpy 计算协方差的结果应该如何理解?
@Richard14 假设十个向量的形状是 a=(10, N),目标向量是 b=(N,),你可以用 np.einsum:

ret_index = np.argmin(np.einsum('ij,j->i', a,b)/np.linalg.norm(a, axis=-1)/np.linalg.norm(b, axis=-1))
ret_vec = a[ret_index]

这个简洁但是会比较慢,可以考虑用 numba 的 guvectorize
from numba import float64, guvectorize
@guvectorize([(float64[:, :], float64[:], float64[:])],'(n,p),(p)->(n)', target='parallel') # target = 'cpu', 'gpu'
....def batch_dot(a, b, ret):
........for i in range(a.shape[0]):
........t1=t2=t3=0
............for j in range(a.shape[1]):
................t1 += a[i, j] * b[j]
................t2 += a[i, j] * a[i, j]
................t3 += b[j] * b[j]
............ret[i] = t1 / t2**0.5/t3**0.5
ret = batch_dot(a,b)
38 天前
回复了 Richard14 创建的主题 Python Numpy 计算协方差的结果应该如何理解?
np.cov(x, y, ddof=0)
# 11.44 1.16
# 1.16 14.24

cov 是所有的都算的,矩阵是 xx, xy, yx, yy ,你需要的仅是 xy ,你就直接 np.mean((a-a.mean())*(b-b.mean())) 就行了。另外,关联性一般用 correlate ,协方差(ddof=0)应该是关联函数的第一个值,后面可以看到衰减。
57 天前
回复了 necomancer 创建的主题 职场话题 我是老了么……
@SIEMENS +1s +1s +1s
58 天前
回复了 Yimkong 创建的主题 MacBook Pro 最近发现苹果 12 和 m1 充电漏点
官方好像只有那个加长线上带三相头
1. P 里每一个向量维度都是 N
2. 我相信构造方法课里有,用一般关系写不下,举个 4x4 的例子:
f(a,b,c,d) = (0,a,d,0)
则存在 f^2 = 0 ,f 的 nilpotent index 为 2
w_1 = Ker f = {(0,b,c,0)}
w_2 = Ker f^2 = (a,b,c,d)
令 b_1 为 w_1 的基,则 b_1 = (0,1,0,0) (0,0,1,0)
令 t_2 为 w_2/w_1 的基,则 t_2 = (1,0,0,0) (0,0,0,1)
f(t_2) = (0,1,0,0) (0,0,1,0)
于是
t_2 ~ (1,0,0,0) (0,0,0,1)
t_1 ~ f(t_2) = (0, 1, 0, 0) (0, 0, 1, 0)
则按照 t_1 t_2 的行顺序取列:
b = {(0,1,0,0),(1,0,0,0),(0,0,1,0),(0,0,0,1)} 为一组基,对应
p =
........|0 1 0 0|
........|1 0 0 0|
........|0 0 1 0|
........|0 0 0 1|
P^{-1}AP =
|0 1 0 0|
|0 0 0 0|
|0 0 0 1|
|0 0 0 0|

A 为 f 对应的矩阵
|0 0 0 0|
|1 0 0 0|
|0 0 0 1|
|0 0 0 0|
关于   ·   帮助文档   ·   API   ·   FAQ   ·   我们的愿景   ·   广告投放   ·   感谢   ·   实用小工具   ·   3315 人在线   最高记录 5497   ·     Select Language
创意工作者们的社区
World is powered by solitude
VERSION: 3.9.8.5 · 9ms · UTC 04:55 · PVG 12:55 · LAX 21:55 · JFK 00:55
Developed with CodeLauncher
♥ Do have faith in what you're doing.